Article

Fluid Bed And Melt Granulation In Pharmaceutical Manufacturing

Source: AbbVie

By Brian C. Anderson, Director, Drug Products and Daniel Mateo-Ortiz, Senior Scientist II, Engineering, AbbVie

iStock-146792998-capsule-powder-pill

Granulation has become an essential formulation choice for many pharmaceutical applications, owing to its superior physicochemical profile and improved handling conditions when compared to powders. Understanding and controlling granulation is essential to the production of high-quality pharmaceuticals, and optimizing processes to further streamline granulation can serve to create substantial improvements in a drug’s safety and efficacy.

Granulation, typically performed once powders containing the active pharmaceutical ingredient (API) and any excipients have been mixed together to a defined ratio, affords developers many advantages in terms of density, flowability, and uniformity. Various techniques have been developed to optimize the uniformity and efficacy of granulated products. Dry methods involve the use of applied pressure to compact powdered material, while wet granulation requires the introduction of a specialized binder to cause aggregate formation. Likewise, melt granulation relies on a meltable binding agent that amalgamates with the powder upon heating.

Affording superior process reproducibility and better process control than many other granulation techniques, fluid bed and melt granulation can be tightly regulated to produce uniform material with a specified particle size. These techniques represent an opportunity for drug developers to achieve appreciable efficiency gains in their processes, as well as measurable improvements in their final drug products.

access the Article!

Get unlimited access to:

Trend and Thought Leadership Articles
Case Studies & White Papers
Extensive Product Database
Members-Only Premium Content
Welcome Back! Please Log In to Continue. X

Enter your credentials below to log in. Not yet a member of Pharmaceutical Online? Subscribe today.

Subscribe to Pharmaceutical Online X

Please enter your email address and create a password to access the full content, Or log in to your account to continue.

or

Subscribe to Pharmaceutical Online