Article | February 10, 2012

Micromeritics Instruments Aid In Research Aimed At Sequestration Of Carbon Dioxide Greenhouse Gas

Source: Micromeritics Instrument Corporation

The combustion of fossil fuels for energy has steadily increased the concentration of greenhouse gases in the earth's atmosphere. Of the numerous trace gases, carbon dioxide is a major component making up the majority of these emissions. Carbon dioxide sequestration involves the capture and secure storage of not only existing amounts of CO2 in the atmosphere, but emitted CO2 as well. Since the Kyoto Protocol, concerns over combustion gas emissions have received a great deal of attention.

There are numerous energy-related approaches to managing CO2 that include several carbon free energy sources (e.g. nuclear, solar, wind, geothermal, and biomass energy). Scientists are also searching for ways to increase the efficiency of energy conversion so that smaller amounts of fossil fuel energy are required for the same energy output. However, although promising, these alternatives currently have a relatively small effect on current fossil fuel demand and usage. Fossil fuels continue to supply the overwhelming majority of the world's energy consumption. Increasing energy demands, the lag in converting to alternative energy sources, the global economic dependence on fossil fuels, and its relative low cost and high availability mean that fossil fuel consumption will likely continue for decades to come. As a result, there is a large amount of scientific research focused on effective methods to remove large amounts of carbon dioxide from the atmosphere and industrial emission sources, and store it safely.

access the Article!

Get unlimited access to:

Trend and Thought Leadership Articles
Case Studies & White Papers
Extensive Product Database
Members-Only Premium Content
Welcome Back! Please Log In to Continue. X

Enter your credentials below to log in. Not yet a member of Pharmaceutical Online? Subscribe today.

Subscribe to Pharmaceutical Online X

Please enter your email address and create a password to access the full content, Or log in to your account to continue.

or

Subscribe to Pharmaceutical Online