Cleanroom solutions and research

CLEANROOM PRODUCTS

GettyImages-1326891881 cleanroom, lab Particle Loss Studies

Ensure Compliance. Safeguard Sterility. Drive Manufacturing Excellence.

  • Spray-Dried Dispersion Services For Optimal API Performance

    Improve solubility, stability, and speed to clinic for even your toughest APIs. See why innovators are relying on Spray Dried Dispersion (SDD) technology.

  • Cleanroom Technology For Unparalleled Cleanliness and Speed

    Experience Unparalleled Cleanliness and Speed

    At AES Clean Technology, we understand the critical importance of maintaining ultra-clean environments in industries such as pharmaceuticals, biotechnology, medical device, high tech manufacturing, and more. That’s why we’re proud to introduce the CleanLock Module™ – a revolutionary airlock solution designed to enhance cleanliness, speed, and efficiency in your cleanroom project execution.

  • Pharmaceutical Facility Monitoring System

    Facility Monitoring System with industrial control systems assures data integrity, process automation, simplicity of use, and data integration.

  • Esco IntelliGlove Tester Wireless Glove Leak Tester

    The Esco IntelliGlove Tester (EIGT) is Esco’s third-generation wireless glove leak tester, designed for leak detection on gloves, sleeves, and gauntlets used in isolators, RABS, and glove boxes.

  • VirusGEN® Transfection Complex Stabilizer

    Scale AAV production with peace of mind. Extend transfection complex formation time by up to 3 hours, reduce complex volume by >50%, and maintain high titers and full capsids.

  • Glass Vial Forming Lines

    Stevanato Group vial forming lines come in a variety of specifications that vary depending on the production requirements. By maintaining close ties with the customer throughout every step of the process, we can design and manufacture fully tailored, purpose-built equipment capable of producing vials with entirely custom dimensions and shape.

  • Terminal Sterilization

    Drive compliance, sterility assurance, and manufacturing efficiency by leveraging the proven advantages of terminal sterilization for your drug products.

  • PHCbi Large Capacity Double Door Refrigerator: MPR-1412-PA

    PHCbi brand's 48.2 cu.ft., refrigerator with 8 adjustable shelves and a forced-air circulation for maximum temperature uniformity at all levels. Unique electronic defrost cycle initiates defrost function automatically, minimizing temperature fluctuation during the process. The temperature control system, with a microprocessor, maintains true temperature at the set level and is unaffected by outside ambient temperature. Audible and flashing LED visual alarms alert the user to the unlikely event of either a high or low temperature status. High performance refrigeration system with reserve cooling capacity assures fast recovery following door openings.

  • Cleanrooms For R&D And Testing Facilities

    Research and development is the heart of life sciences innovation, which is why AES provides modular cleanroom solutions that let teams iterate freely and scale as needed.

  • Faciliflex Cleanroom Module For Drug Manufacturing

    Faciliflex Module offers the ultimate flexibility in cleanroom design—pre-configured, modular “base blocks” that allow you to mix-and-match all the components you need for your next cleanroom facility.

CLEANROOM OVERVIEW

Cleanrooms can be very large. Entire manufacturing facilities can be contained within a cleanroom with factory floors covering thousands of square meters. They are used extensively in semiconductor manufacturing, biotechnology, the life sciences and other fields that are very sensitive to environmental contamination.

The air entering a cleanroom from outside is filtered to exclude dust, and the air inside is constantly recirculated through high-efficiency particulate air (HEPA) and/or ultra-low penetration air (ULPA) filters to remove internally generated contaminants.

Staff enter and leave through airlocks (sometimes including an air shower stage), and wear protective clothing such as hoods, face masks, gloves, boots and coveralls.

Equipment inside the cleanroom is designed to generate minimal air contamination. Only special mops and buckets are used. Cleanroom furniture is designed to produce a minimum of particles and to be easy to clean.

Common materials such as paper, pencils, and fabrics made from natural fibers are often excluded, and alternatives used. Cleanrooms are not sterile (i.e., free of uncontrolled microbes);[3] only airborne particles are controlled. Particle levels are usually tested using a particle counter and microorganisms detected and counted through environmental monitoring methods.[4][5]

Some cleanrooms are kept at a positive pressure so that if there are any leaks, air leaks out of the chamber instead of unfiltered air coming in.

Some cleanroom HVAC systems control the humidity to low levels, such that extra equipment ("ionizers") is necessary to prevent electrostatic discharge (ESD) problems.

Low-level cleanrooms may only require special shoes, with completely smooth soles that do not track in dust or dirt. However, for safety reasons, shoe soles must not create slipping hazards. Access to a cleanroom is usually restricted to those wearing a cleanroom suit.[6]

In cleanrooms in which the standards of air contamination are less rigorous, the entrance to the cleanroom may not have an air shower. There is an anteroom (known as a "gray room"), in which clean-room clothing must be put on, from which a person can walk directly into the room (as seen in the photograph on the right).

Some manufacturing facilities do not use fully classified cleanrooms, but use some cleanroom practices to maintain their contamination requirements.[7][8]

Air flow principles

Air flow pattern for "Turbulent Cleanroom"
Air flow pattern for "Laminar Flow Cleanroom"

Cleanrooms maintain particulate-free air through the use of either HEPA or ULPA filters employing laminar or turbulent air flow principles. Laminar, or unidirectional, air flow systems direct filtered air downward in a constant stream towards filters located on walls near the cleanroom floor or through raised perforated floor panels to be recirculated. Laminar air flow systems are typically employed across 80 percent of a cleanroom ceiling to maintain constant air processing. Stainless steel or other non-shed materials are used to construct laminar air flow filters and hoods to prevent excess particles entering the air. Turbulent, or non-unidirectional, air flow uses both laminar air flow hoods and non-specific velocity filters to keep air in a cleanroom in constant motion, although not all in the same direction. The rough air seeks to trap particles that may be in the air and drive them towards the floor, where they enter filters and leave the cleanroom environment.[9]

Cleanroom classifications

Cleanrooms are classified according to the number and size of particles permitted per volume of air. Large numbers like "class 100" or "class 1000" refer to FED-STD-209E, and denote the number of particles of size 0.5 µm or larger permitted per cubic foot of air. The standard also allows interpolation, so it is possible to describe, for example, "class 2000".

A discrete-particle-counting, light-scattering instrument is used to determine the concentration of airborne particles, equal to and larger than the specified sizes, at designated sampling locations.

Small numbers refer to ISO 14644-1 standards, which specify the decimal logarithm of the number of particles 0.1 µm or larger permitted per cubic metre of air. So, for example, an ISO class 5 cleanroom has at most 105 = 100,000 particles per cubic metre.

Both FS 209E and ISO 14644-1 assume log-log relationships between particle size and particle concentration. For that reason, zero particle concentration does not exist. The table locations without entries are non-applicable combinations of particle sizes and cleanliness classes, and should not be read as zero.

Because 1 m3 is approximately 35 ft3, the two standards are mostly equivalent when measuring 0.5 µm particles, although the testing standards differ. Ordinary room air is approximately class 1,000,000 or ISO 9.[10]

US FED STD 209E cleanroom standards

Class maximum particles/ft3 ISO
equivalent
≥0.1 µm ≥0.2 µm ≥0.3 µm ≥0.5 µm ≥5 µm
1 35 7.5 3 1 0.007 ISO 3
10 350 75 30 10 0.07 ISO 4
100 3,500 750 300 100 0.7 ISO 5
1,000 35,000 7,500 3000 1,000 7 ISO 6
10,000 350,000 75,000 30,000 10,000 70 ISO 7
100,000 3.5×106 750,000 300,000 100,000 700 ISO 8

US FED STD 209E was officially cancelled by the General Services Administration of the US Department of Commerce November 29, 2001,[11][12] but is still widely used.

ISO 14644-1 cleanroom standards

Class maximum particles/m3 FED STD 209E
equivalent
≥0.1 µm ≥0.2 µm ≥0.3 µm ≥0.5 µm ≥1 µm ≥5 µm
ISO 1 10 2.37 1.02 0.35 0.083 0.0029  
ISO 2 100 23.7 10.2 3.5 0.83 0.029  
ISO 3 1,000 237 102 35 8.3 0.29 Class 1
ISO 4 10,000 2,370 1,020 352 83 2.9 Class 10
ISO 5 100,000 23,700 10,200 3,520 832 29 Class 100
ISO 6 1.0×106 237,000 102,000 35,200 8,320 293 Class 1,000
ISO 7 1.0×107 2.37×106 1,020,000 352,000 83,200 2,930 Class 10,000
ISO 8 1.0×108 2.37×107 1.02×107 3,520,000 832,000 29,300 Class 100,000
ISO 9 1.0×109 2.37×108 1.02×108 35,200,000 8,320,000 293,000 Room air

BS 5295 cleanroom standards

  maximum particles/m3
Class ≥0.5 µm ≥1 µm ≥5 µm ≥10 µm ≥25 µm
Class 1 3,000   0 0 0
Class 2 300,000   2,000 30  
Class 3   1,000,000 20,000 4,000 300
Class 4     200,000 40,000 4,000

BS 5295 Class 1 also requires that the greatest particle present in any sample does not exceed 5 μm.[13]

GMP EU classification

Class maximum particles/m3[14]
At Rest At Rest In Operation In Operation
0.5 µm 5 µm 0.5 µm 5 µm
Class A 3,520 20 3,520 20
Class B 3,520 29 352,000 2,900
Class C 352,000 2,900 3,520,000 29,000
Class D 3,520,000 29,000 n/a n/a

 

CLEANROOM EDITORIAL AND NEWS

CLEANROOM WHITEPAPERS AND CASE STUDIES